MATH 2028 Honours Advanced Calculus II 2023-24 Term 1 Problem Set 2

due on Sep 27, 2023 (Wednesday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through CUHK Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Notations: Throughout this problem set, we use R to denote a rectangle in \mathbb{R}^n , and $B_{\delta}(p) \subset \mathbb{R}^n$ to denote the open ball of radius δ centered at p.

Problems to hand in

- 1. (a) Let $A \subset \mathbb{R}^n$ be a content zero subset. Prove that A must be bounded. Moreover, show that ∂A has measure zero and $\operatorname{Vol}(A) = 0$.
 - (b) Let $B \subset \mathbb{R}^n$ be a bounded subset of measure zero. Suppose ∂B has measure zero. Prove that $\operatorname{Vol}(B) = 0$.
- 2. Let $f: R = [0,1] \times [0,1] \to \mathbb{R}$ be the function

$$f(x,y) = \begin{cases} 1/q & \text{if } x, y \in \mathbb{Q} \text{ and } y = p/q \text{ where } p, q \in \mathbb{N} \text{ are coprime.} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is integrable and $\int_B f \, dV = 0$.

3. Let $f: R \to \mathbb{R}$ be a bounded integrable function. Suppose p is an interior point of R at which f is continuous. Prove that

$$\lim_{\delta \to 0^+} \frac{1}{\operatorname{Vol}(B_{\delta}(p))} \int_{B_{\delta}(p)} f \, dV = f(p)$$

Suggested Exercises

- 1. Let $f : R \to \mathbb{R}$ be a bounded integrable function. Prove that |f| is also integrable on R and $|\int_R f \, dV| \leq \int_R |f| \, dV$.
- 2. Let $f: \Omega \to \mathbb{R}$ be a bounded continuous function defined on a bounded subset $\Omega \subset \mathbb{R}^n$ whose boundary $\partial\Omega$ has measure zero. Suppose Ω is path-connected, i.e. for any $p, q \in \Omega$, there exists a continuous path $\gamma(t): [0,1] \to \Omega$ such that $\gamma(0) = p$ and $\gamma(1) = q$. Prove that there exists some $x_0 \in \Omega$ such that

$$\int_{\Omega} f \, dV = f(x_0) \operatorname{Vol}(\Omega).$$

- 3. (a) Prove that any content zero subset $A \subset \mathbb{R}^n$ must also have measure zero.
 - (b) Give an example of a measure zero subset $A \subset \mathbb{R}^2$ which does not have content zero.
 - (c) Prove that if $A \subset \mathbb{R}^n$ is compact ¹ and has measure zero, then A has content zero.

¹A subset A is compact if any open cover of A has a finite subcover. The Heine-Borel Theorem says that a subset in \mathbb{R}^n is compact if and only if it is closed and bounded.

- (d) Suppose $\{A_i\}_{i=1}^{\infty}$ is a sequence of measure zero subsets in \mathbb{R}^n . Show that $\bigcup_{i=1}^{\infty} A_i$ also has measure zero.
- 4. (a) Show that the subset $\mathbb{R}^{n-1} \times \{0\} \subset \mathbb{R}^n$ has measure zero.
 - (b) Show that $\mathbb{Q}^c \cap [0,1]$ does not have measure zero in \mathbb{R} .
- 5. Let $f : R \to \mathbb{R}$ be a bounded function. Suppose f = 0 except on a *closed* set B of measure zero. Prove that f is integrable and $\int_{B} f \, dV = 0$.

Challenging Exercises

1. The following exercise establishes the theorem that a bounded function $f : R \to \mathbb{R}$ is integrable if and only if f is continuous on R except on a set of measure zero. Let $f : R \to \mathbb{R}$ be a bounded function. For each $p \in R$ and $\delta > 0$, we define the *oscillation of* f *at* p as

$$o(f,p) = \lim_{\delta \to 0^+} \left(\sup_{x \in B_{\delta}(p) \cap R} f(x) - \inf_{x \in B_{\delta}(p) \cap R} f(x) \right).$$

- (a) Show that o(f, p) is well-defined and non-negative. Prove that f is continuous at p if and only if o(f, p) = 0.
- (b) For any $\epsilon > 0$, let $D_{\epsilon} := \{p \in R : o(f, p) \ge \epsilon\}$. Show that D_{ϵ} is a closed subset and the set of discontinuities D of f is given as $D = \bigcup_{n=1}^{\infty} D_{1/n}$.
- (c) Suppose f is integrable on R. Prove that $D_{1/n}$ has content zero for any $n \in \mathbb{N}$. Hence, show that D has measure zero.
- (d) Suppose D has measure zero, prove that f is integrable on R.
- 2. This exercise requires some familiarity with linear algebra at the level of MATH 2040/2048.
 - (a) Let $A \subset \mathbb{R}^n$ be a subset of content zero. Show that for any $\epsilon > 0$, there exists finitely many cubes ${}^2 C_1, \dots, C_n$ such that $A \subset \bigcup_{i=1}^n C_i$ and $\sum_{i=1}^n \operatorname{Vol}(C_i) < \epsilon$.
 - (b) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Prove that T(A) has content zero if $A \subset \mathbb{R}^n$ has content zero.
 - (c) Let $F: U \to \mathbb{R}^n$ be a C^1 map from an open subset $U \subset \mathbb{R}^m$ where m < n. Prove that F(A) has content zero (in \mathbb{R}^n) if $A \subset U$ is a compact subset.

 $^{^{2}\}mathrm{A}$ cube is a rectangle with sides of equal length.